Thursday, July 2, 2015

Exemple of changing to a reference frame in the past

Suppose we search a galaxy and we detect the Lyα emission being three times greater than the Lyα in our world. The wavelenght is exactly 3647,07 Â.
The H Lyα in our frame is 1215,69 Â.
So, the apparent redshift Z(f) is Lyα(f)/Lyα(o)-1 = 2
The constant Kh is (1+Z(f))^(1/3) = (1+2)^(1/3) =1,44224957
So, Kh=1,44224957
Now we can determine the main constants of the reference frame in the past;

                        formula*                   local frame(o)             past frame(f)

h(f)                 h(o) x (Kh)                  6,62606957E-34 Js        9,5564460E-34 Js

Lyα(f)             Lyα(o) x (Kh)³              1215,69 Â                    3647,07 Â

r(f)                 r(o) x (Kh)²                 0,529 Â                       1,1007 Â

E(f)                 E(o) / (Kh)²                 10,204 eV                    4,906 eV

WDC(f)          WDC(o) x (Kh)               0,0028978 mK              0,0041796 mK

R∞(f)             R∞(o) / (Kh)³               10973730,68 m-¹          3657910,22 m-¹

T(f)                 T(o) / (Kh)²                 23836 ºK                     11459 ºK

(f) Observed frame in the past
(o) Local frame at the present
 * simplified formula

If we consider Ho=71 km/s/mpc and assume it is enough to determine the distance, we have:
distance= 3380,3 mpc   = 11,02 GLY
time (past) = 11,02 Gyr

Ho= Hublle constant 

Wednesday, July 1, 2015

                        
 SHRINKING MATTER THEORY

This blog is not to disprove the big bang theory, but for those not yet brainwashed by the believers in such theory. 
The first step of the Shrinking Matter Theory is a compact summary, but it contains all the basic mathematic to assume the universe as the reference frame.
The shrinking matter theory and the expansion universe theory are equivalent. If we make our world as the reference frame, the universe should expand. If we make the universe as the reference frame, the matter should shrink. The laws of physics work to both theories.
The main diference of expansion universe and the shrinking matter theory is what is the cause of the longer wavelenght emissions observed of the deep space objects.
The doppler shift (redshift) is well known in the expansion universe theory.
In the shrinking matter theory, the universe is the reference frame, so there is not expansion to cause redshift (except in the systemic local movements like rotation, orbits, binary systems, turbulence, ejection, gravitational effect and gravitational falling), so, the longer wavelenghts observed are actually longer emission lines due the bigger size of the atoms in the past. 
If we assume the speed of the light is constant along the time, the constant plank “h” should grow by the factor of (1+Z)^(1/3) in the past. This mean the constant plank decrease along the time.
To simplify, we could call (1+Z)^(1/3)=Kh, so, h(f)=Kh x h(o).
Z : apparent observed redshift
h(f): constant Plank in the observed frame.
h(o): contant Planck of our local frame.
Constant dependence:
We must apply the constant Kh for all formulae and constants used in physics were the constant Planck “h” is used.
So that simplify the work, we can apply the constant Kh directly over the used values of our local frame, observing the right exponential use of the constant Planck as follow;
h(f)=Kh x h(o)                “constant Planck”   
λ(f)=(Kh)³ x λ(o)            “wavelenght emission lines” 
r(f)=(Kh)² x r(o)             “Bohr radius”
E(f)= E(o) / (Kh)²           “energy of the emission line” 
WDC(f)=(Kh) x WDC(o)   “Wien Displacement Constant”
R∞(f)=R∞(o) / (Kh)³       “Rydberg constant”
T(f)=T(o) / (Kh)²             “Temperature of the emission line (Wien)”
(f) observed frame in the past.
(o) our local frame in the present.